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Variational Principle
Variational principle, examples. [2]

Bound states and scattering states in one dimension
Bound states, re�ection and transmission amplitudes. Examples. Relation between bound states
and transmission amplitude by analytic continuation. [3]

Scattering theory in three dimensions
Classical sca�ering, de�nition of di�erential cross section. Asymptotic wavefunction for quan-
tum sca�ering, sca�ering amplitude, cross section. Green�s function, Born approximation to
sca�ering on a potential. Spherically symmetric potential, partial waves and phase shi�s, op-
tical theorem. Low energy sca�ering, sca�ering length. Bound states and resonances as zeros
and poles of S-matrix. [5]

Electrons in a magnetic �eld
Vector potential and Hamiltonian. �antum Hamiltonian, inclusion of electron spin, gauge
invariance, Zeeman spli�ing. Landau levels, e�ect of spin, degeneracy and �lling e�ects, use
of complex variable for lowest Landau level. Aharonov-Bohm e�ect. [4]

Particle in a one-dimensional periodic potential
Discrete translation group, la�ice and reciprocal la�ice, periodic functions. Bloch�s theorem,
Brillouin zone, energy bands and gaps. Floquet matrix, eigenvalues. Band gap in nearly-free
electron model, tight-binding approximation. [3]

Crystalline solids
Introduction to crystal symmetry groups in three dimensions, Voronoi/Wigner-Seitz cell. Prim-
itive, body-centred and face-centred cubic la�ices. Reciprocal la�ice, periodic functions, la�ice
planes, Brillouin zone. Bloch states, electron bands, Fermi surface. Basics of electrical con-
ductivity: insulators, semiconductors, conductors. Extended zone scheme. Bragg sca�ering.
Vibrations of crystal la�ice, quantization, phonons. [7]
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1 Approximation�eory

1.1 Variational Method

�e method is as followed:

- we cook up a class of states (aka wavefunctions) parametrized by some param-
eter α.

- We �nd E(α), the energy of that state.

- Since we know any state can be decomposed into eigenstates, we must have
E(α) > E0 for all α. So we �nd the minimum E(α) and call it a day! Further-
more, if we know the ground state has parity, and our cooked-up wavefunction
set has a di�erent parity, then we are estimating the energy of the �rst excited
state!

Example (Virial �eorem). Suppose we have a particle in d dimensions, moving in
the potential V (x) = Arn. �is means the potential scales as V (λx) = λnV (x).
�en assume there is a normalized ground state ψ0(x) with energy E0 = T0 + V0.
�en consider the trial class ψ(x;α) = αd/2ψ0(αx), so that ψ(x;α) is normalized for
all α. �en from the scaling property we can see that E(α) = α2T0 + α−nV0. And
the minimum gives:

dE

dα
= 2αT0 = nα−n+1V0 = 0

But the minimum must be at α = 1 as this is the true ground state, so we must hav
2T0 = nV0, which is the generalized Virial �eorem.

1.2 Perturbation�eory

We recall fromPQM, for a state |ψ〉 satisfyingH+µV |ψ〉 = E|ψ〉 and that approaches
|r〉 with H|r〉 = Er|r〉 as µ→ 0 for some small parameter in V , we have:

E = Er + µ〈r|V |r〉+ µ2
∑
j 6=r

|〈j|V |r〉|2

Er − Ej
+ · · ·

Where E is the energy of the state |ψ〉.

2 Band Structure

2.1 Electrons in One Dimension

2.1.1 Tight-Binding Model

Consider a 1D la�ice of N electrons evenly separated in space and denote |n〉 as the
state when the electron sits on the nth atom. We have the Hamiltonian:

H = E0

∑
|n〉〈n| − t

∑
n

(|n〉〈n+ 1|+ |n+ 1〉〈n|)
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�e �rst term describs electrons remaining at an atom, and the second term describes
hopping to a neighbouring atom. t is the hopping parameter.
Oh yeah, what about the edges? Here our solution is to declare that the la�ice is
periodic and identify |N + 1〉 = |1〉.
For a general state |ψ〉 =

∑
m ψm|m〉, we substitute into our equation h|ψ〉 = E|ψ〉

to get the following linear equation set:

E0ψn − t(ψn+1 + ψn−1) = Eψn

For each n. �ese are solved by the ansatz ψn = eikna where k is called thewavenum-
ber, and the quantity p = ~k plays a similar role as momentum. Note that k is not
unique so we limit k ∈ [−πa ,

π
a ) and call this the Brillouin zone. �e periodicity re-

quirement gives eikNa = 1, or k is a multiple of 2π
aN .

We also see that this gives E = E0 − 2t cos(ka), where states with k > 0 describe
right-moving electrons and vice versa.

2.1.2 Nearly Free Electrons

�is model is the exact opposite of the model above. We assume that the electron is
free tomove anywhere andwemimic the la�ice by a periodic potential V (x) such that
V (x + a) = V (x). Without the potential we have eigenfunctions ψk(x) = 1√

L
eikx

where k is quantized by 2π
L , and the energy is E0(k) = ~2k2

2m . So now we want to
consider the potential. Perturbation theory it is.

2.1.2.1 Not-so-SimpleTM Perturbation�eory

From PQM, we know the �rst thing to do is to check if the states are degenerate. Here
k and−k are degenerate, but we need to check if the states actually interact! Expand
V (x) in fourier series:

V (x) =
∑
n∈Z

Vne
2πinx/a Vn = V ∗−n Vn =

1

a

∫ a

0

dxV (x)e−2πinx/a

So we now calculate 〈k|V |k′〉 =
∑
n∈Z Vnδk−k′,2πn/a, so we have mixing only when

k = k′ + 2πn
a or when k = πn

a as k′ = −k. But this is the edge of Brillouin Zone
(BZ)! Hmmm….Let’s investigate the energy spectrum.

Low Momentum Using the perturbation formula listed in section one, the �rst order correction
is just V0 from the fourier sum above and we ignore the second order terms. So
the particle just moves as if there is no potential.

At the edge of BZ Here we know that we need degenerate perturbation theory. Write the energy
eigenstates asα|k〉+β|k′〉 to leading order. �en the Schrodingerwaveequation
becomes: (

〈k|H|k〉 〈k|h|k′〉
〈k′|h|k〉 〈k′|H|k′〉

)(
α

β

)
= E

(
α

β

)
But we know what are the individual elements, and take k = −k′:(

~2k2

2m + V0 Vn

V ∗n
~2k2

2m + V0

)(
α

β

)
= E

(
α

β

)
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Which gives the eigenvalues E = ~2k2

2m + V0 ± |Vm|. Gaps appear!

Near edge of BZ Consider k = nπ
a + δ. We do the same perturbation theory as above to get that:

E± =
~2

2m

(
n2π2

a2
+ δ2

)
+ V0 ±

√
|Vn|2 +

(
~22nπδ

2ma

)2

Expand this when δ � Vn:

Epm ≈
~2

2m

(
n2π2

a2
+ δ2

)
+ V0 ± |Vn|2 +

~2

2m

(
1 +± 1

|Vn|
n2~2π2

ma2

)2

δ2

So we see that as we approach the gaps, the energy is quadratic in momentum
δ.

Now this gives us all the information we need to draw the Energy diagram in terms
of k!

�e relationship E(k) is called the dispersion relation.

2.2 Band Structure

�e gaps in the spectrum are very important. Here is another way to see them. Con-
sider

H = − ~2

2m

d2

dx2
+ V (x) = Eφ

Here we have V (x+ a) = V (x) so for the two linearly independent solutions ψ1(x)
and ψ2(x), ψ1(x+ a) and ψ2(x+ a) are also solutions. So we de�ne:(

ψ1(x+ a)

ψ2(x+ a)

)
= F (E)

(
ψ1(x)

ψ2(x)

)
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where F (E) is the Floquet Matrix.

�eorem. detF = 1

Proof. We introduce theWronskian from 1A Di�erential Equations, and thus we have
W (x + a) = F (E)W (x). But it is simple to check that (detW )′ = 0, meaning
detW (x+ a) = detW (x). �us detF (E) = 1.

Now by standard linear algebra, the eigenvalues obey λ2 − trFλ+ 1 = 0. And thus
we either have two complex eigenvalues e±ika, which give :

ψ±(x+ a) = e±ikaψ±(x)

And there are plane-wave-like states.
Or we have two real ones so that ψ±(x + a) = e±µaψ±(x). �ese states are un-
bounded as x→ ±∞, so this is where gaps appear.

2.3 Discrete Translational Invariance

In the absence of a la�ice, we label states by momentum p = ~k because we have
translational symmetry and Noether’s theorem, which tell us [p,H] = 0 so we can
simutaneously diagonalize p andH . With a la�ice we only have discrete translational
invariance x→ x+ a. De�ne a translation operator Tl such that Tlψ = ψ(x+ l).
We claim that Tl is unitary.

Proof.

< φ|Tl|ψ > =

∫
dxφ∗(x)Tlψ(x)

=

∫
dxφ∗(x)ψ(x+ l)

=

∫
dxφ∗(x− l)ψ(x)

=

∫
dx[T−lφ]∗(x)ψ(x)

�us T ∗l = T−l = T−1
l .

By Taylor expansion we can see that Tl = eilp/~.
A system is said to be invariant under translations by l if [H,Tl] = 0. For discrete
translational symmetry, we can simultaneously diagonalize H and Tl.

�eorem (Bloch’s �eorem in 1D). In a periodic potential V (x) = V (x + a), all
energy eigenstates can be writeen as ψk(x) = eikxUk(x) where Uk(x) = Uk(x+ a)
and k ∈ [−πa ,

π
a ].

Proof. Take ψk(x) to be an eigenstate of Ta. �en

ψk(x+ a) = eikaψk(x)

�us Uk(x+ a) = Uk(x).
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Figure 1: Reduced Zone
Scheme

�e quantity p = ~k is called the crystal momen-
tum. It is not mass times velocity. It is conserved
mod 2π~

a . And thus we can draw E(k) vs k in
either the extended zone scheme (the �gure two
pages above) or the reduced zone scheme, shown
onthe right.
Note that the ends are identi�ed. In the reduced
zone scheme, states are labelled by ψn,h(x).

2.4 Lattices

We want to describe an election moving in a 2D
or 3D signal. A Bravais La�ice is a periodic array
of points de�ned by integer sums of linearly in-
dependent basis vectors ai. �ese primitive lat-
tice vectors ai are not unique, as for the square
la�ice below we can take ei as the vectors, or e1

along with the rightward or the le�ward diago-
nal as the primitive vectors.

Figure 2: Bra-
vais Lattice

A primitive unit cell is a region of space which, when translated
by ai, tessellates the space. �ey are not unique.
�eWigner-Seitz cell Γ, also known as the Voronoi cell, is a canoni-
cal primitive unit cell that is de�ned by the region of space closest
to a certain la�ice point.
In 2D, there are 5 di�erent Bravais la�ice, and in 3D, there are 14
of those. However, we are only really interested in 3 of these in
the 3D case and we would ignore the 2D case:

Cubic �is has ai = aei.

Body-centered Cubic (BCC) a1 = ae1, a2 = ae2, and a3 = a
2 (e1 + e2 + e3).

Face-centered Cubic (FCC) a1 = a(e2 + e3), a2 = a(e1 + e3), and a3 = a(e1 + e2).

Given a Bravais la�ice Λ, the reciprocal la�ice is de�ned by:

Λ∗ = {k =
∑

nibi, n ∈ Z

where ai · bj = 2πδij .
In 3D, we can construct bi by:

bi =
π

V
εijkaj × ak

Note. - (Λ∗)∗ = Λ.

- �e reciprocal la�ice lies in Fourier or momentum space.

�e Wigner-Seitz cell of the reciprocal la�ice is called the Brillouin zone. In 1d, a
la�ice with spacing a has a reciprocal la�ice with spacing b = 2π

a . �e Wigner-Seitz
cell is those points in [− b

2 ,
b
2 ], which is what we saw previously.
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�e BZ is also called the 1st BZ. �e nth BZ is those points in recriprocal space that
are nth closest to the origin. All those higher BZ have the same volume as the �rst
one.
To construct BZ boundaries, draw perpendicular bisectors between the origin and all
other points. Cross n− 1 bisectors from the origin and you are in the nth BZ.

Figure 3: First �ree BZs of Square Lattice

We can map higher BZ into the �rst BZ by translation by q ∈ Λ∗. �e edges of the
BZ are identi�ed, so that for a d-dimensional la�ice, the BZ is a torus T d.

2.5 Band Structure in 3D

We still have Bloch’s theorem, and the proof is entirely the same. �e label k is called
the crystal momentum (actually strictly ~k).k is ambiguous as if we add an vector in
the recirpocal la�ice to it, it has the same eigenvalues by de�nition.
As in ID, we can choose to restrict k to lie in the 1st BZ. In this case, we label states by
k ∈ BZ and by a band index n ∈ Z. �is is the reduced zone scheme. Alternatively, it
may be useful to label states by k ∈ Rd. �is is the extended zone scheme.

2.5.1 Tight-binding in 3D

We can redo our tight-binding model or a general bravais la�ice Λ. �e electron can
sit in states |r >, r ∈ Λ. We can write a tight-binding Hamiltonian as:

H = E0

∑
|r〉〈r| −

∑
〈r,r′〉

tr−r′(|r〉〈r′|+ |r′〉〈r|)

=
∑

(E0|r〉〈r| −
∑
a

ta(|r〉〈r′|+ |r′〉〈r|)

Where the second sum is summing over all r′ that is adjacent to r.
Again, this is easily solved with:

|ψ(k)〉 =
1√
N

∑
r∈λ

eik·r|r〉
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Where N is the number of total la�ice sites. Similar to 1D, this has energy:

E(k) = E0 −
∑
a

2ta cos(k · a)

2.5.2 Nearly Free Electrons in 3D

Consider an electron inR3 in a potential V (x) = V (x+r) for all r ∈ Λ. We will work
perturbatively, starting from plane wave states |k〉 with 〈x|k〉 = eikx and E0(k) =
h2k2

2m . We will need the Fourier transform:

V (k) =

∫
e−ikxV (x)d3x

Claim. V (k) = 0 unless k ∈ Λ∗.

Proof.

V (k) =
∑∫

d3xe−k(x+r)V (x+ r)

=
∑

e−ikr
∫

d3xe−ikxV (x)

De�ne ∆(k) =
∑
e−ikr . �en:

∆(k) = σ(k1)σ(k2)σ(k3)

where σ(k) =
∑∞
−∞ e−2πikn. Consider:

σN (k) =

N/2∑
−N/2

e−2πikn =
e−2πik(N/2+1) − e2πikN/2

e−2πik − 1

So ΣN (k) = sin(N+1)πk
sinπk . Now we can prove that (through drawing and kind of hand-

waving) :

lim
N→∞

σN (k) =

∞∑
−∞

δ(k − n)

�us ∆(k) = V ∗
∑
δ(k − q). �is thus means that we can write:

V (x) =
∑
q∈Λ∗

eiqxVq

From perturbation theory we have:

〈k|V (x)|k′〉 ∼
∫

d3xei(k
′−k)xV (x) = 0

unless k′ − k = q with q ∈ Λ∗.
�is means that a state k can only sca�er o� to be k′ if the di�erence q = k′ − k can
be absorbed by the la�ice.
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how does the energy change?

- For low momentum, |k〉 can only sca�er into |k + q〉 which has very di�erent
energy⇒ non-degenerate perturbation so the spectrum is unchanged.

- iF |k〉 has the same energy as |k+ q〉, q ∈ Λ∗, then we need degenerate pertur-
bation theory. �is gives that:

k2 = (k + q)2 ⇒ 2kq + q2 = 0

�us k = − 1
2q + k⊥ where k⊥q̇ = 0. �us, k lives on the bisector between 0

and −q, so k is the boundary of BZ.
For degenerate perturbation, a gap opens up a boundary of BZ and note that
the gap would vary as we move around the boundary.

Figure 4: Energy contours for 2D square lattice

A�er knowing what the energy looks like, we want to know how many states are in
the BZ:

Claim. �enumber of states in the BZ is equal to N, the number of sites on the spatial
la�ice Λ.

Proof. Consider a la�ice r =
∑
niai of �nite size where 0 ≤ ni ≤ Ni. �e total

number of sites is N = N1N2N3.
We impose periodic boundary conditions ψ(x+Niai) = ψ(x). �en Bloch’s theorem
tell us that e−niaik = 1. �is gives:

k =
∑
i

mi

Ni
bi

where bi are the primitice vectors of the reciprocal la�ice. Now we can think of each
state occupying a unit volume in the reciprocal la�ice of volume V ∗

N , so the number
of states is precisely N .

3 Electron Dynamics in Solids

We would start by doing something wrong: Ignore interactions between electrons.
�is is completely unjusti�ed, but it turns out the results we are going to get are the
same.
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3.0.1 Fermi Surfaces

Electrons are fermions that obey the Pauli exlcusion principle: no two electrons can sit
in the same state. To start, suppose there is no la�ice, and the electrons sit in a cubic
box, with sides of length L:

E =
h2k2

2m
k1 =

2πni
L

�us we �ll out a ball of electrons in momentum space as energy levels get �lled. �is
is called the Fermi sea, and the boundary of the ball is called the Fermi surface. �e
states on the fermi surface have Fermi momentum ~kF and Fermi energy EF =

~2k2F
2m .

�en in a la�ice, the following happens:

- �e energy spectrum splits into bands. (Remember Brillouin Zones)

- Each band can accommodate 2N electrons, where N is the number of la�ice
sites, as electrons have two spin states.

But there is one further important fact. In a solid, each atom typically donates some
number Z of electrons which are free to roam around. Z is an integer and is called
the valency. Now let’s look at the case Z = 1:
�us we have N electrons, which can comfortably �t within the �rst BZ. Consider
the BZ for a 2d square la�ice. If there is no la�ice, the fermi surface �lls a circle with
area half of the square.
�e e�ect of the la�ice is to lower energy close to the BZ boundary and distort the
Fermi surface so that is increasingly looks like a wide cross, shown below.

Figure 5: Fermi surface for increasing lattice strengths

�erefore, in this case, we can start to classify metals and insulators. If we perturb
the system then the electrons near the Fermi surface can respond by moving into
unoccupied states. For example, if we apply a small electric �eld, the electrics respond
and a current �ows. A material with a Fermi surface is called a metal.
For Z = 2, the same thing happens, but for a la�ice suitably strong, we have Emin in
second BZ is larger than Emax in the �rst BZ, so the fermi sea �lls the whole square
(as we have 2N electrons) and there is no fermi surface as there is an energy gap to
excite any electron. For small perturbations, the electrons don’t move.
Materials with no Fermi surface are called insulators.

3.1 Graphene

Finally, some actual example. Graphene is a two-dimensional la�ice of carbon atoms
arranged on a honeycomb la�ive. It was discovered in 2004. It is best thought of

12



as a triangular Bravais la�ice but each site has two connected carbon atoms. a1 =√
3a
2 (
√

3, 1), a2 =
√

3a
2 (
√

3,−1). �e subla�ice A is r = naa1, n2a2, subla�ice B is
r = n1a1 + n2a2 + d, with d = −a(1, 0).

Figure 6: A: Red dots; B: White dots

Now the reciprocal la�ice span a triangular la�ice, and we look at two adjacent cor-
ners of the hexagonal BZ, denoted K and K′. Now we work with the tight-binding
model:

H = −t
∑
r∈A

[|r;A〉〈r;B|+ |r;A〉〈r + a1;B|+ |r;A〉〈r + a2;B|+ · · · ]

where |r;A〉 is on the A-subla�ice. We solve using the ansatz:

|ψ(k)〉 =
1√
2N

∑
eikr(cA|r;A〉+ cB |r;B〉)

Solving the Schrodinger equation with this gives E(k) = ±|γ(k)|, where:

γ(k) = −t(1 + eika1 + eika2)

Now if we expand it out:

E(k) = ±t

√
1 + 4 cos(

3kxa

2
) cos(

√
3kya

2
) + 4 cos2(

√
3kya

2
)

�ere are two bands as we have two subla�ices. �e two bands meet at k = K, and
k = K′. Now graphene has valency z = 1, so the lower states are �lled and the
higher states are not. �e fermi surface is just two points, k = K , and k = K ′. �ese
are Dirac points.

Figure 7: Band Structure of Graphene
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In the vicinity of Dirac points, k = K + q, where q is some small momentum. A
taylor expansion gives E(k) ≈ ± 3ta

2 |q|. �is is the dispersion relation for a massless
relativistic particle: E = |p|c. We have E(k) ≈ ~vF |q|, where vF = 3ta

2~ is the speed
of the electron. In graphene, this is about 1

300 of the speed of liight. But the low energy
physics of graphene is described by relativistic equations.
Close to k = k, we can expand γ and get that :

γ(k) ≈ vF~(iqx − qy)

Near the Dirac point, we have:

H = vF~
(

0 iqx − qy
−iqx − qy 0

)
= −vF~q · σ

where σx =

(
0 1

1 0

)
], σy =

(
0 −1

1 0

)
, σ = (σy, σx). �is si the Dirac equation for

a massless relativistic fermion in two spatial dimensions. For Dirac, the two compo-
nents of H were the spin, in graphene they denote A,B subla�ice. Of course, real
electrons also have spin | ↑〉 and | ↓〉. �erefore, the excitations of graphene consist
of 4 species of massless relativistic particles, two fromK and two fromK ′.

3.2 Dynamics of Bloch Electrons

Consider a single elecrton in a band with energy E(k), k ∈ BZ .

Claim. �e velocity is v = 1
~
∂E
∂k .

Proof. �e velocity is de�ned as v = 1
m 〈ψ|− ih∇|ψ〉. From Bloch’s theorem we have

ψk(x) = eikxUk(x). �en the schrodinger equation becomes:

Hkuk(x) = E(k)uk(x)

whereHk = ~2

2m (−i∇+ k)2 + V (x). ConsiderHk+q = Hk + ∂Hk
∂k q + 1

2
∂2Hk
∂ki∂kj q

iqj .
�e 1st order perturbation theory gives:

∆E = 〈uk|
∂Hk

∂k
q|uk〉

But the exact result is E(k + q) = E(k) + ∂E
∂k q + · · · . �en equating the two:

∂E

∂k
= 〈uk|

∂Hk

∂k
|uk〉 =

~2

m
〈uk|(−i∇+ k)|uk〉 =

~
m
〈ψk| − i~∇|ψk〉 = ~v

From this, we have two more claims:

Claim. - A �lled band has no electric current j = −ev.

- A �lled band has no heat current:

jH = 2

∫
d3k

(2π)3
(Ev)

14



Proof. -

j = −2e

~

∫
d3k

(2π)3

∂E

∂k
= 0

-
jH = 2

∫
d3k

(2π)3
(Ev) =

1

~

∫
d3k

(2π)3

∂(E2)

∂k
= 0

As both here are total derivatives of periodic functions in k.

De�nition. �e e�ective mass tensor is de�ned to be:

m∗ij = ~2

(
∂2E

∂ki∂kj

)−1

For isotropic system, we havem∗ij = m∗δij .

3.3 Semi-classical Equations of Motion

Suppose we add an external force to the electron F = −∇U(x). �e semi-classical
approximation views the quantum particle as a wavepacket with some average k and
x. Consider the total energy of the particle to be:

E = E(k) + U(x) ⇒ ∂E

∂k

∂k

∂t
+∇U ∂x

∂t
= v

(
~
∂k

∂t
+∇U

)
= 0

So we have:
~

dk

dt
= −∇U = F

�is is Newton’s 2nd law for a Bloch electron. In general, we have to solve:

~
dk

dt
= F v =

1

~
∂E

∂k

We can also retrieve Newton’s second law of motionm∗ dv
dt = F .

Example. An electron in a constant electric �eld E experiences a force F = −eE.
�en we have k(t) = k(0) − eE

~ t. Consider E = −C cos(ka),a one-dimensional
system with a tight-binding form of band-structure, then:

v(k) = −Ca
~

sin(ka)

Which oscillates in time. �erefore, a DC current produces AC oscillations! but sadly,
in real life, it gets destroyed by impurities.

3.3.1 Holes

Consider a completely �lled band and remove one electron. �e vacancy acts as if its
a particle in its own right. It’s called a hole. Expanding about the top of the band, the
electron dispersion relation is :

Ek = Emax +
~2

2m
|k − kmax|2
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wherem∗ < 0 here (look at the dispersion relation graph and think what happens at
the top). As the hole moves away from the top of the band, it costs more energy (as
we are subtracting less). we write:

Ehole(k) = −E(k) = −Emax +
~2

2m∗hole
|k − kmax|2

Since we are taking away an electron with momentum k, the resulting hole has mo-
mentum −k. However, we have that:

vhole =
1

~
∂Ehole
∂khole

=
1

~
∂E

∂E
= v

So the velocity is the same as the removed electron. �ese de�nitions give rise to the
equation:

m∗hole
dvhole

dt
= −F

So in an electric �eld, we can see holes as carrying a positive +e charge.

3.4 An Example - Electrons in a Magnetic Field

3.4.1 Semi-Classical Motion

Our semi=classical equation of motion gives:

~
dk

dt
= −ev ×B v =

1

~
∂E

∂k

�en using these equations we can see that:

dE

dt
=
∂E

∂k
· ∂k
∂t

= −3v · (v ×B) = 0

So the energy is constant and the component of k parallel to b is constant. �en we
know the electrons orbit the fermi surface (constant energy) perpendicular toB. �en
we consider the path in the plane perpendicular to B:

B̂× ~k̇ = −eBṙ⊥

�en we can solve this by integrating time and ge�ing:

r⊥(t) = r⊥(0)− ~
eB

B̂× (k(t)− k(0))

For free electrons, since in k space electrons move in circles, this moves in circles too
and we reproduce the classical result.

3.4.2 Cyclotron Frequency

Now the time taken to travel between two points is:

t2 − t1 =

∫ k2

k1

dk

|k̇|
=

~2

eB

∫ k2

k1

dk

|∂E∂k ⊥|

16



�en if we consider another orbit withE+∆E with momentum k′ = k+ ∂E
∂k ⊥∆(k),

then the energy di�erence is:

∆E = |∂E
∂k ⊥

|∆(k)

So the total time is:

t2 − t1 =
~2

eb

1

∆E

∫ k2

k1

∆(k)dk

But the integral is just the area di�erence between the two orbits in k-space! So:

T =
~2

eb

∂A(E)

∂E

And for free electrons we can check this con�rms our high-school intuition.

4 Phonons

4.1 Lattices in 1 Dimension

Consider N identical, equally spaced atoms. �e nth atom has position xn, N =
1, · · · , N . In equilibrium, we have xn = na. �e potential that holds them in place
takes the form

∑
n V (xn − xn−1). If we taylor expand about xn = na, we will

generally �nd a harmonic oscillator. For small deviations, we write:

un(t) = xn(t)− na

�e hamiltonian is then:

H =
∑
n

p2
n

2m
+
λ

2

∑
n

(un − un−1)2

�e equation of motion is:

mün = −λ(2un − un−1 − un+1)

�e solution takes the form un = Ae−i(ωt+kna), where we really take real and imag-
inary parts for the solution. Once again, k ∈ [−πa ,

π
a ], the BZ. Periodicity requires

uN+1 = u1, so we have:

k =
2π

Na
l

with l = −N2 , · · · ,
N
2 . Now substituting the solution into the equation of motion

gives that ω = 2
√

λ
m | sin(ka2 )|. For small k > 0, we can expand this in k, and

ω ≈
√

λ
mak. �e phonon dispersion relation is thus reminiscent of light, and we

call
√

λ
ma the speed of sound.
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4.1.1 Diatomic Chain

Now similarly as above, but consider a chain of atoms of alternating type. �e equa-
tions of motions are:

m ¨u2n = −λ(2u2n − u2n−1 − u2n+1

M ¨u2n+1 = −λ(2u2n+1 − u2n − u2n+2

We use the ansatz:

u2n = Ae−wωt−2ikna u2n+1 = Be−iωt−2ikna

�en we can determine ω to be:

ω2
± = − λ

mM
[m+M ±

√
(M −m)2 + 4Mm cos2(ka)]

�e + branch is called the optical branch, and the − branh is the acoustic branch.
If we look at the eigenvalues of the schrodinger equation as k → 0, we have A =
1, B = 1 for the lower branch so they move in phase and create sound waves, and
A = M,B = −m for the upper branch, so the atoms move out of phase. Since o�en
the di�erent sites of the la�rice contains ions of opposite charge, and this creates
a dipole with some frequency that can emit/absorb light, and thus the name optical
branch.

4.1.2 Peierls Transition

Consider electrons moving in a 1d monatomic la�ice that can also vibrate. Valency
z = 1 gives a half-�lled band and thus it is a conductor. Now consider a distortion of
the la�ice in which successive pairs of atoms move closer together. �is costs a lot of
energy as the la�ice is out of equilibrium:

Ulattice ∼ Nλ(δx)2

where δx is the shi� away from normal. �is also has an e�ect on the electrons. Since
the la�ice periodicity is now 2a, the BZ is k ∈ [− π

2a ,
π
2a ]. We expect a gap to open

up at k = ± π
2a . Filled states will have lower energy, un�lled states will have higher

energy. Does this lowered energy beat the cost of distorting the la�ice? �e energy
gain is:

Uelectron = −2Na

2π

∫ π/2a

−π/2a
dk(E0(k)− E−(k))

where the 2 on the top is to account for the spin-degree of freedom, and Na
2π is the

density of states of the electrons.
Now we look at the region near k = π

2a . Taylor expanding, we have:

E0(k) ≈ µ+ v(k − π

2a
)

Now using a result from the energy dispersion close to BZ edge (from long long ago):

E±(q) = µ±
√
v2q2 +

∆2

4
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So:

Uelectron ≈ −
Na

π

∫ 0

−Λ

dq(vq+
√
v2q2 + ∆2/4) = −Na

π

[
∆2

16v2Λ
− ∆2

8µ
log(

∆

2vΛ
)

]
Now the �rst term competes with Ulattice but the second term always beats Ulattice
when ∆ is small! �is shows that a half-�lled conductor in 1d cannot exist! It is
unstable to a la�ice distortion that turns it into an insulator.

5 Particles in Magnetic Fields

5.1 Gauge Fields

Recall from Electromagnetism, the electric �eldE andmagnetic �eldB can be wri�en
as:

E = −∇φ− ∂A

∂t
B = ∇×A

A and φ are called gauge �elds. A particle of massm and charge q has Lagrangian:

L =
m

2
ẋ2 + qẋA− qφ

�e classical equation of motion from this Lagrangian is:

mẍ = q(E + ẋ×B)

5.1.1 �e Hamiltonian

De�nition. �e canonical momentum is de�ned as p = mẋ+ qA.

And the Hamiltonian is given by the Legendre transformation of L, which is:

H = ẋ · p− L =
1

2m
(p− qA)2 + qφ

5.1.2 Gauge Transformation

Well from Electromagnetism we know we can change φ and A around as:

φ→ φ− ∂α

∂t
A→ A+∇α

In this transformation, we have p → p + q∇α so the numerical value of p have
zero meaning but the Hamiltonian and the velocity are both gauge invariant. �e
schrodinger equation changes as:

ψ → eiqα/~ψ

And this is seen most easily if we de�ne:

Dt =
∂

∂t
+
iq

~
φ Di =

∂

∂xi
− iq

~
Ai

Because then the schrodinger equation becomes:

i~Dtψ = − ~
2m

D2ψ

And these transform nicely.
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5.2 Landau Levels

Let’s consider cool cases! No. We will have a vanishing electric �eld and a constant
magnetic �eld. �at’s it.
�e Hamiltonian is h = 1

2m (p − qA)2. Take B = (0, 0, B) and we take the Landau
gauge, which de�nes

A = (0, xB, 0)

�en the Hamiltonian becomes:

H =
1

2m
(p2
x + (py − qBx)2 + p2

x)

Here it is actually be�er to work with ladder operators:

a =
1√

2q~B
(πx + iπy) a† =

1√
2q~B

(πx − iπy)

Which satisfy the same commutation relation as the ladder operators in PQM for har-
monic oscillators and we can work from there. [Check Example Sheet 3]
But we can also use the ansatz:

ψ(x) = eikyy+ikzzχ(x)

And we get that:

E = ~ωB
(
n+

1

2

)
+

~2k2
z

2m
ωB =

qB

m

And with wavefunctions:

ψ(x, y) ∼ eikyy+ikzzHn(x− kyl2B)e−(x−kyl2B)2/2l2B lB =

√
~
qB

And whereHn are the hermite polynomial wavefunctions of the harmonic oscillator.
�is looks like a harmonic oscillator, and it will be obvious if one uses the ladder
operators.

5.2.1 Degeneracy

Wewill now say bye to the z dimension by taking kz = 0. �en these levels are called
Landau levels.
We see the energy does not depend on ky , so we expect a lot of degeneracy. Let’s
draw a rectangular Lx × Ly box. �en in the y-direction we must have the periodic
condition (like any good old harmonic oscillator in a box), so ky is quantized in units
of 2π

Ly
.

Now the x direction is harder. Why? Because we do not have translational invariance
in this gauge for A. Since the wavefunctions are exponentially localized around x =
kyl

2
B , then we would expect 0 ≤ ky ≤ Lx/l2B since 0 ≤ x ≤ Lx. �en the number of

states in each Landau level is:

n =
LyLx
2πl2B

=
qBA

2π~

where A is the area of the sample. �is is huge!

20



5.2.2 Symmetric Gauge

We can also work in the symmetric gauge:

A =
B

2
(−y, x, 0)

Where there is no translational symmetry but there is rotational symmetry. So let’s
introduce the angular momentum:

H = − ~2

2m
∇2 +

qB

2m
Lz +

q2B2

8m
(x2 + y2) Lz = xpy − ypx

�en take it into the complex plane ofw = x+iy, w̄ = x−iy, and ∂ = 1
2

(
∂
∂x − i

∂
∂y

)
,

we have:
H = −2~2

m
∂∂̄ − ωb

2
Lz +

mω2
B

8
ww̄

�en it is simple to check the lowest Landau level states obey:

psi0(w, w̄) = f(w)e−|w|
2/4l2B

for any holomorphic f(w). But the requirement that they are also eigenvalues of Lz
brings f(w) = wM whereM ∈ Z+.

5.3 Aharonov-Bohm E�ect

You see, A and φ are actually physical; they are just a bit discreet.

5.3.1 Particles around a Flux Tube

Let’s take a good old cylindrical solenoid of areaA carrying a megnatic �eldB inside
and thus having a A with Aφ = Φ

2πr where Φ = BA is the magnetic �ux. Consider a
charged quantum particle restricted on a ring of radius r outside the solenoid. Using
our hamiltonian and ψ = 1√

2πr
einφ as the eigenstates we see the spectrum is:

E =
~2

2mr2
(n− Φ

Φ0
)2

where Φ0 = 2π~
q is the quantum of �ux. �us we see that if Φ is an integer multiple

of Φ0 then nothing happens. But if it is not, the particle knows about the �ux! Even
though it can be arbitrarily far away.
Now the gauage �eld is a total divergence A = ∇α with α = Φφ

2π . So we can try
to remove this problem discussed above by rede�ning ψ → e−iqα/~ψ. But this only
works (single-valuedly) when Φ is a multiple of Φ0 = 2π~

q . Aw Snap.

5.4 Magnetic Monopoles

A magnetic monopole is an object that satis�es:

B =
gr̂

4πr2
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Where g is the magnetic charge.
WAIT, WAIT, WAIT,∇ ·B = 0 man. Can’t happen.
Well, it turns out there is a physicist called Dirac that is smarter than most of the
people and found a loophole…

Note. It is also rumored that Dirac found a loophole in the Constitution of USA.

5.4.1 Dirac�antization

We know from above that when a charge particle q moves in a closed path in the
background of some A(x) the particle wavefunction picks up a phase eiqα/~ with
α =

∮
C
A · dx.

now we place our magnetic charge (don’t object yet) at the center, and place our
electric particle in the background of it. �en we have:

α =

∮
A · dx =

∫
S

B · dS

If the surface makes a solid angle Ω, then using the fact that
∫
S2 B · dS = g, we have

α = Ωg
4π . But we can equally integrate over its complement, which gives:

α′ = − (4π − Ω)g

4π

�is gives the quantization condition that:

qg = 2π~n

with n ∈ Z as eiqα/~ = eiqα
′/~.

5.4.2 Patching Gauge Fields

�is derivation still leaves open the question of how we can have B = ∇ × A and
∇ ·B 6= 0. To see this consider the following:

ANφ =
g

4πr

1− cos θ

sin θ

Now we can do a quick calculation to verify that B = ∇×A = gr̂
4πr2 .

Wait, wait, wait….I see what you are doing here. A is singular at θ = π! �at isn’t
right. But don’t worry, just tag along for now. We can similarly de�ne:

Asφ = − g

4πr

1 + cos θ

sin θ

And it would have the same B. �is is not de�ned on the half-line θ = 0. Now the
important part comes: we would use AN in the Northern hemisphere and AS in the
southern hemisphere. �ese two are related by a gauge transformation so it doesn’t
ma�er that they don’t match at the equator! �e gauge transformation is:

Anφ = ASφ +
1

r sin θ
∂φα
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Where α = gφ
2π . But we run into a new problem. α is not single valued, and we do

want our wavefunction ψ to be single-valued. Under this gauge transformation, we
have:

ψ → eiqα/~ψ

And ψ is single valued only if qg = 2π~n, n ∈ Z . �is is Dirac quantization again.

5.5 Spin in a Magnetic Field

Particles carry an intrinsic sngular momentum called spin, S. Angular momentum
of charged particle give rises to magnetic moment m which couples to the magnetic
�eld by:

H = −m ·B

�e question is: what’s the relationship between spin S and m? Consider a particle
of charge q and massmmoving in a circle. From electromagnetism,m = − q2r× v =
− q

2mL. By analogy, we would expectm = g q
2mS. An important result is that ge = 2,

while gp ≈ 5.588, gn ≈ −3.823, as the la�er two are composite particles.

5.5.1 Spin Precession

�e spin of an electron with q = −e couples to a magnetic �eld H = e~
2mσ · B. If

B = (0, 0, B) the two eigenstates are | ↑〉 and | ↓〉 with H| ↑〉 = ~ωB
2 | ↑〉, H| ↓〉 =

−~ωB
2 | ↓〉, where ω = eB

m . In general we can write:

|ψ(θ, ψ)〉 = cos
θ

2
| ↑〉+ eiφ sin

θ

2
| ↓〉

And using time-dependent Schrodinger’s equation we have that:

|ψ(θ, ψ, t)〉 = eiωBt/2
[
cos

θ

2
| ↑〉+ ei(φ−ωbt) sin

θ

2
| ↓〉
]

�us the e�ect of the magnetic �eld is to cause the spin to precess about the B axis.

5.5.2 Zeeman E�ect

6 Scattering �eory

6.1 Scattering in 1 Dimension

We work in 1D to see most of the intuition as in 3D all is lost except calculations. We
know the solutions to the time-independent Schrodinger equation can be separated
into two types:

Bound States �ese have normalizable wavefunctions, E < 0, and the particle is trapped
within the potential.

Scattering States �ese have non-normalizable wavefucntions, E > 0, and the particle can be
”anywhere”. Asymptotically they must look like plane waves eikx (right mov-
ing) and e−ikx (le� moving).
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6.1.1 Some Review

We know from 1B quantum mechanics that sca�ering can be seen as:

ψR(x) ∼

{
eikx + re−ikx x→ −∞
teikx x→∞

For particles coming in from the le� (and change sign for the right), with re�ection
probability |r|2 and transmission probability |t|2. From IB we also know there is a
conserved probability current:

J(x) = −i ~
2m

(
ψ∗

dψ

dx
− ψdψ∗

dx

)

6.1.2 �e New Stu� and�e Parity Basis

Now since V (x) is real so ψ∗R(x) is also a solution. �en:

ψ∗R(x)− r∗ψR(x) ∼

{
(1− |r|2)e−ikx x→ −∞
t∗e−ikx − r∗teikx x→∞

�is has the same form as ψL(x) except a factor so they must agree a�er dividing
through t∗, thus, for the sca�ering from the right with t′ and r′, we know:

t′ = t r′ = −r
∗t

t∗

6.1.2.1 S-Matrix

Note. �is is one of the most important concepts in this chapter. Seriously.

Now we write the incoming basis as IR = eikx x → −∞ and IL = e−ikx x → ∞,
and the outgoing basis as OR = eikx x→∞ and OL = e−ikxx→ −∞. �en:(

ψR
ψL

)
=

(
IR
IL

)
+ S

(
OR
OL

)
where:

S =

(
t′ r

r′ t

)
Some initial properties of S matrix:

- S is unitary.

- S∗(k) = S(−k) as �ipping k and −k along with complex conjugation doesn’t
change the basis.
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6.1.2.2 Parity Basis

It is useful to work with eigenfunctions of the parity operator P : ψ(x)→ ψ(−x).
For symmetric potentials with V (x) = V (−x) we have ψk(x) = ψk(−x). It is be�er
to wotk with asymptotic states which are eigenstates of P .

ψ+(x) = ψR(x) + ψL(x) = ψR(x) + ψR(−x)

And similarly ψ−(x) = ψR(x)− ψL(x).

Example. We look at a potential well with width a and height V0, centered at 0. �e
parity even state is:

ψ+(x) = A(eiqx + e−iqx)

�e match at x = a
2 gives:

r + t = −e−ika q tan(qa/2)− ik
q tan(qa/2) + ik

And similarly for the parity odd one we can �nd that:

r − t = −eika ik tan(qa/2) + q

ik tan(qa/2) + q

�ere is no need to check the −a2 one as by parity we are done!

In general we de�ne incoming and outgoing asymptotic states as:

Incoming �e parity + state is L+ = e−ik|x|, and the − state is L− = sgn(x)e−ik|x|.

Outgoing �e parity + state is eik|x|, and the parity − state is −sgn(x)eik|x|. Now we
have: (

L+

L−

)
= M

(
LR
LL

)

WhereM =

(
1 1

−1 1

)
, and similarly for the outgoing state.

Now the S-matrix with respect to parity basis is:(
ψ+

ψ−

)
=

(
L+

L−

)
+ Sp

(
θ+

θ−

)

Where SP = MSM−1 =

(
t+ 1

2 (r + r′) 1
2 (r − r′)

1
2 (r − r′) t− 1

2 (r + r′)

)
. Note that S and S are

unitary, and if V (x) = V (−x), then r = r′, and thus S++ and S−− are both phases,
as their magnitude has to be 1. [Remember that r′ = −r∗t

t∗ ] �us we write:

S++ = e2iδ+(k) S−− = e−2iδ−(k)

�e S-matrix encodes many properties of the potential V (x).
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6.1.3 Bound States

If we know the S-matrix, we can resoncstruct the band state spectrum. �e trick is
to analytically continue S(k) to K ∈ C. Consider V (x) = V (−x) and parity even
states. Asymptotically,

ψ+(x) = L+(x) + S++θ+(x) ∼

{
eikx + S++e

−ikx x→ −∞
e−ikx + S++e

ikx x→∞

Now we set k = iλ and divide through S++ so we have:

ψ+(x) ∼

{
S−1

++e
−λx + eλx x→ −∞

S−1
++e

λx + e−λx a→∞

�e wavefunction is normalizable whenever S++(k)→∞ as k → iλ for λ > 0. �e
upshot is that poles in the S-matrix on the positive imaginary k-axis correspond to
bound states with energy −~2λ2

2m . �e same story holds for S−−.

Example. Nowwe look at our potential well again. HereS++(k) = −e−ika q tan(qa/2)−ik
q tan(qa/2)+ik .

If we set k = iλ, then this has a pole when:

λ = q tan
qa

2
λ2 + q2 =

2mV0

~2

Which is what we had during IB QM! SImilarly we can do this for the parity odd ones.

6.1.4 Resonances

Let’s look at parity-even functions and assume S++ has a pole at k = k0 − iγ and
of course −k∗ (generally). �e energy is E = E0 − iΓ

2 where E0 = ~2 k
2
0−γ

2

2m and
Γ = 2~2k0

m .
�e imaginary energy is to remind us that this state (which evolves as e−iET/~) decays
over time and τ = 1/Γ is its half-life. �ese kind of states appear when we have a
high but positive potential well in which the particle eventually escapes but not for a
long while. An example can be seen on the third example sheet with a pair of delta
functions.

6.2 Scattering in �ree Dimensions

Finally, we get to the topic of interest. Our hamiltonian is

H =
p2

2m
+ V (r)

�is could be thought as the motion fo a single particle or the relative motion of 2
particles separated by distance r and interacting through F = −∇V (r). To make our
lives easier and pay no a�ention to 3D whatsoever, we will only consider rotaionally
invariant potentials.
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6.2.1 Cross-Section and A Lot Of De�nitions

Figure 8: Classical Scattering

Here b is the closest approach point without sca�ering, or impact parameter and θ
is the sca�ering angle. Consider a uniform circular beam of particles at b impact
paramter. Let σ be the incoming cross-sectional area of the beam, and let Σ be the
outgoing beam cross-sectional area, then we have dσ = bdφdb and dΣ = sin θdφdθ,
so we de�ne the following:

De�nition. - �e di�erential cross-section is de�ned as:

dσ

dΣ
=

b

sin θ

∣∣∣∣dbdθ

∣∣∣∣
�is is the ratio of the incoming and outgoing cross-sectional areas.

- �e total cross-section is de�ned as:

σT =

∫
dΣ

dσ

dΣ

�is, intuitively, tells us how ”strong” the sca�ering is.

- �e sca�ering amplitude f(θ) is de�ned as the θ coe�cient of the sca�ering of
a plane wave:

ψscattered(r) = f(θ)
eikr

r

And we also have that dσ
dΣ = |f(θ)|2.

6.2.2 Partial Waves

We know that for spherical waves we have an expansion in terms of partial waves:

ψ(r, θ) =
∑

Rl(r)Pl(cos θ)

Where Pl(cos θ) are Legendre polynomials. Remember they are eigenfunctions of the
angular momentum operator of eigenvalue ~2l(l+1). �en the Schrodinger equation
becomes: (

d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
− U(r) + k2

)
Rl(r) = 0

Where we have rescaled the potential U(r) = 2m
~2 V (r).
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6.2.2.1 Asymptotic Waves

Now assume asymptotically the potential drops o� quickly enough so that waves
obey U(r) = 0. �en we have R0(r) = e±ikr

r . And for l 6= 0 the solutions are called
spherical Bessel functions. Another solution is of course the plane wave eikz and with
su�cient determination, we can write this as:

eikr =

∞∑
l=0

2l + 1

2ik

[
eikr

r
− (−1)l

e−ikr

r

]
Pl(cos θ)

So the plane wave decomposes into an outgoing spherial wave and an ingoing one
(second term).

6.2.3 Scattering Amplitude, and Unitarity Bounds

We consider a planewave coming in the z directionwith eikz andwewant to calculate
solutions with the asymptotic form ψ(r) = eikz + f(θ) e

ikr

r . Expanding f(θ) into
legendre polynomials with f(θ) =

∑
2l+1
k flPl(cos θ),we have:

ψ(r) ∼
∑ 2l + 1

2ik

[
(−1)l+1 e

−ikr

r
+ (1 + 2ifl)

eikr

r

]
Pl cos θ

Note for each l we have an ingoing and outgoing wave. �is is 1D! For rotationally
invaraint potentials, the 3D S-matrix S is diagonal in the angular momentum basis
with Sl = 1 + 2ifl = e2iδi where the second equality follows as Sl must be a phase.
�en we have:

f(θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδl − 1)Pl(cos θ)

�e di�erential cross section is then:

dσ

dΣ
=

1

k2

∑
l,l′

(2l + 1)(2l′ + 1)flf
∗
l′Pl(cos θ)Pl′(cos θ)

�e total cross section then can be evaluated using the orthogonality of Legendre
polynomials to give:

σT =
4π

k2

∑
l

(2l + 1) sin2 δl

�en comparing to our f(θ) expansion we see:

σT =
4π

k
Im f(0)

�is is called the optical theorem. If we think of the total cross-section instead as built
from the cross-sections for each partial wave, then we have:

σT =
∑

σl σl =
4π

k2
(2l + 1) sin2 δl

Now each contribution is maximized when δl = ±π2 , called the unitarity bound.
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6.2.4 An Example - �e Hard Sphere

Ok, ok, let’s do an actual example. Our sca�ering region is a hard sphere with in�nite
potential inside r = a and 0 outside. We similarly decompose it in partial waves, and
the radial part obeys: (

d2

dρ2
− l(l + 1)

ρ2
+ 1

)
(ρRl(ρ)) = 0

where ρ = kr. �e solutions to these are the spherical bessel functions jl(ρ) and
nl(ρ) where:

jl(ρ) = (−ρ)l
(

1

ρ

d

dρ

)l
sin ρ

ρ
nl(ρ) = −(−ρ)l

(
1

ρ

d

dρ

)l
cos ρ

ρ

�e asymptotic forms are:

jl(ρ)→
sin(ρ− 1

2 lπ)

ρ
nl(ρ)→

cos(ρ− 1
2 lπ)

ρ
ρ→∞

And:

jl(ρ)→ ρl

(2l + 1)!!
nl(ρ)→ −(2l − 1)!!ρ−(l+1)

Out of all of this, the only really useful thing is to see that nl diverges at the origin
and jl does not.
�e general solution for the radial equation is then:

Rl(r) = Al [cosαljl(ρ)− sinαlnl(ρ)]

�e asymptotic form is ∼ 1
ρ sin(ρ− 1

2 lπ + αl). While the expected form (remember
the plane wave expansion) is:

Rl(r) ∼
eiδleiπl/2

ρ

[
−e−i(ρ+δl−πl/2) + ei(ρ+δl−πl/2)

]
And we see that they agree if αl = δl, so we found our phase shi�!
�e boundary condition imposed by the sphere gives Rl(a) = 0, or in terms of phase
shi�:

tan δl =
jl(ka)

nl(ka)

For very low momentum, we can then expand this in powers of ka and get that:

σT = 4πa2(1 +O((ka)4))

which is a factor of 4 bigger than the corresponding classical πa2 result. We also have
δl ∼ (ka)2l+1 at low momentum, so the sca�ering is dominated by the l = 0 wave
which we can write as:

δ0 ∼ −kas +O(k3)

We call as the sca�ering length.
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6.2.5 Bound States

We then consider a sphere of radius a again, but with potential −V0 inside. De�ne
U(r) = 2mV (r)

~2 and γ2 = 2mV0

~2 . �en outside we have the free Schrodinger equation:

ψ(r) =
A sin(kr + δ0)

r

Where a similar argument as in the example above would show that δ0 is the phase
shi� for the 0th partial wave. Inside the sphere we have:(

d2

dr2
+ k2 + γ2

)
(rψ) = 0

which gives the solution:

ψ(r) =
B sin(

√
k2 + γ2r)

r

As the wavefunction needs to be regulat at r = 0. We patch the two solutions together
and get the condition:

tan(ka+ δ0)

ka
=

tan(
√
k2 + γ2a)√

k2 + γ2a

At low energies k2 � γ2 with tan(ka+δ0)
ka ≈ tan(γa)

γa , we can rearrange the equation
to get:

tan δ0 = ka

(
tan(γa)

γa
− 1

)
+O(k3)

So as = a − tan(γa)
γ . We see that the sca�ering length is negative for small γ (pulls

into the sca�ering region) and it also has poles. We can do a similar derivation (but
too boring to show here) that bound states exist exactly at the points which γ diverges
and these are also exactly the points where the spherical wave component of the S
matrix, S0(k) has poles.

6.2.6 Resonance

Again, if poles occur at energy E = E0 − iΓ
2 , then the S-matrix, which is a phase,

must take the form:
S(E) = e2iθ(E)E − E0 − iΓ/2

E − E0 + iΓ/2

By taylor expanding the solution (uninteresting). Set θ = 0 to see the physics. �en
we have:

sin2 δ =
Γ2

4(E − E0) + Γ2

�en using the expansion of σT in sin2 δl, we know that:

σT ≈
4π

k2
(2l + 1)

Γ2

4(E − E0) + Γ2

�is is called the Breit-Wigner distribution, which looks like the following:
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Figure 9: Breit-Wigner distribution

�is is what the LHC is always looking for! �is peak indicates sca�ered o� particles
and we try to measure its property.

6.3 Lippmann-Schwinger Equation

For the general time-independent Schrodinger equation, write H0 = −~2∇2

2m and φ a
state that satis�es h0|φ〉 = E|φ〉. �en we can rearrange the Schrodinger equation
to:

|ψ〉 = |φ〉+
1

E −H0
V |ψ〉

�is is called the Lippmann-Schwinger equation.

6.3.1 �e Green’s Function

Note that the inverse operator E − h0 is exactly the Green’s function that obeys:(
E +

~2∇2

2m

)
G0(E; r, r′) = δ(r − r′)

Write E = ~2k2

2m and rewrite the equation as:

(∇2 + k2)G0(k; r − r′) =
2m

~2
δ(r − r′)

Where the sneaky change inG0 to r− r′ = q is by translational invaraince. We solve
by Fourier transform:

G̃0(k; q) =

∫
e−iqxG0(k;x)

�is gives:

(−q2 + k2)G̃(k; q) =
2m

~2
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�is is something we can solve! �e answer is:

G̃0(k; q) = −2m

~2

1

q2 − k2

Before one gets too excited, let’s move back to position space:

G0(k;x) = −2m

~2

∫
d3q

(2π)3

eiqx

q2 − k2

�is integral, sadly, is not well-de�ned due to the singularity at q = ±k. To resolve
this, we use:

G+
0 (k;x) = −2m

~2

∫
d3q

(2π)3

eiqx

q2 − k2 − iε
ε→ 0+

We could have also used+iε, and it would have given us a di�erent answer. Wewould
see what they mean later. Now we polar transform:

G+
0 (k;x) = −2m

~2

1

(2π)3

∫ 2π

0

dφ

∫ +1

−1

d(cos θ)

∫ ∞
0

dq
q2eiqx cos θ

q2 − k2 − iε

=
−2m

~2

1

(2π)2ix

∫ ∞
−∞

dq
qeiqx

(q − k − iε)(q + k + iε)

�e expansion here is valid as ε→ 0+ so we are safe. �en we complete a half circle
in the upper half-plane using complex methods, which includes the pole at k + iε

=
−2m

~2

1

4π

eik|r−r
′|

|r − r′|

If we had picked +ε to start with, we would have ended up with a minus sign in the
exponent. We now rewrite the Schrodinger equation as:

ψ(k; r) = eikr − 2m

~2

∫
d3r′

eik|r−r
′|

4π|r − r′|
V (r′)ψ(k; r′)

�e interpretation is that eikr is the incident wave while the second term is a sca�ered
wave. �erefore, it would be quite unphysical if we took reverse signs: A spherical
wave would come in and turn into a plane wave!
Asymptotically, when rr′, we have:

|r − r′| =
√
r2 − 2rr′ + r′2 ≈ r − r · r′

r
+ ·

�en we have:

G+
0 (k, r − r′) ≈ −2m

~2

1

4π

eikr

r
e−ikrr

′

So substituting in, we have:

ψ(r) ∼ eikr + f(θ, φ)
eikr

r

where f(θ, φ) = −2m
~2

1
4π

∫
d3r′e−ikr̂r

′
V (r′)ψ(k; r′). Wait, but we haven’t actually

solved it! �at is true: we just got the form of it. To get more information, we need
another tool:
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6.4 �e Born Approximation

We want to solve:

ψ(k, r) = eikr +

∫
d3rG+

0 (k; r − r′)V (r′)ψ(k, r′)

So we series expand! With ψ(r) =
∑∞

0 φN (r), with φ0(r) = eikr . �is gives that:

φn+1(r) =

∫
d3r′G+

0 (k; r − r′)V (r′)φn(r′)

Roughly speaking, this converges if V is like small.We truncate this by the leading
term and say:

ψ(r) = eikr − 2m

4π~2
[

∫
d3r′eiqr

′
V (r′)]

eikr

r

Where q = k − kr̂. But this is just the fourier transform. So the sca�ering amplitude
is:

f(θ, φ) =
−m
2π~2

Ṽ (q)

Where Ṽ is the fourier transform of V .

Example. We introduce the Yukawa potential V (r) = Ae−µr

r . �e fourier transform
is:

Ṽ (q) =
4πA

q2 + µ2

So the di�erential cross section is just |f(θ, φ)|2, which is:(
2Am

~2µ2 + 8mE sin2( θ2 )

)2

6.5 Scattering o� a Lattice

Note. �is is the �nal topic of the entire course. I know, it is long indeed.

Denoting k′ = kr̂ as the sca�ered momentum (e�ectively replacing θ, φ), we know
that if a wave localized at 0 is sca�ered o� a potential which is localized around R
then:

ψ(r) ∼ eik(r−R) + f(k, k′)
eik|r−R|

|r −R|
Now let us have r →∞ and expand |r −R| ≈ r − r̂ ·R. �en:

ψ(r) ∼ e−ik·R
[
eikr + f(k, k′)e−i(k

′−k)·R e
ikr

r

]
So we see that our e�ective sca�ering amplitude is f(k)eiqR where q = k− k′. �en
if we have a la�ice of points Λ , then :

fΛ(k, k′) = f(k, k′)
∑
R∈Λ

eiqR
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But we know what the sum is. From a long time ago when we were still talking about
la�ices, this vanishes unless q ∈ Λ∗. �en there is sca�ering from a la�ice i�

k − k′ ∈ Λ∗

�is is known as the Laue condition.

6.5.1 �e Bragg Condition, or Explaining to a PhysicistTM

�ere is an equivalent phrasing in real space. If we de�ne k ·k′ = k2 cos θ, then taking
the square of this gives:

|q| = 2k sin(θ/2)

Now each q ∈ Λ∗ de�nes a set of parallel planes in Λ known as Bragg planes and have
a · q = 2πn. �e distance between successive planes is then d = 2π

|q| . Furthermore, k
corresponds to a wavelength λ = 2π

k . �us we have:

nλ = 2d sin(θ/2)

BUTWAIT!�is is high school physics! If we treat the waves as sca�ering o� succes-
sive planes, then they achieve constructive interference i� this condition is satis�ed!
(See Young’s double slit experiment in high school)
�is is the physicist’s interpretation of Laue’s condition and it is actually hard to justify
that the particles sca�ering o� planes, but oh well. �ey need some kind of heuristic
explanation.

Note. I have nothing against physicists. I am just a faithful note copier. :).

6.5.2 �e Structure Factor

If the la�ice is not Bravais and instead described by a Bravais la�ice and some atoms
displaced by vectors di, then the sca�ering amplitude is replaced by f(k.k′) = ∆(q)S(q)
where S(q) =

∑
i fi(k.k

′)eiq·di . �e function S(q) is called the geometric structure
factor.
We are done!
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